Filamin B represses chondrocyte hypertrophy in a Runx2/Smad3-dependent manner
نویسندگان
چکیده
FILAMIN B, which encodes a cytoplasmic actin binding protein, is mutated in several skeletal dysplasias. To further investigate how an actin binding protein influences skeletogenesis, we generated mice lacking intact Filamin B. As observed in spondylocarpotarsal synostosis syndrome patients, Filamin B mutant mice display ectopic mineralization in many cartilaginous elements. This aberrant mineralization is due to ectopic chondrocyte hypertrophy similar to that seen in mice expressing Runx2 in chondrocytes. Accordingly, removing one copy of Runx2 rescues the Filamin B mutant phenotype, indicating that Filamin B is a regulator of Runx2 function during chondrocyte differentiation. Filamin B binds Smad3, which is known to interact with Runx2. Smad3 phosphorylation is increased in the mutant mice. Thus, Filamin B inhibits Runx2 activity, at least in part, through the Smad3 pathway. Our results uncover the involvement of actin binding proteins during chondrogenesis and provide a molecular basis to a human genetic disease.
منابع مشابه
Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation.
Parathyroid hormone-related protein (PTHrP) is essential to maintain a pool of dividing, immature chondrocytes in the growth plate of long bones. In chick and mouse, expression of Nkx3.2/Bapx1 in the growth plate is restricted to the proliferative zone and is down regulated as chondrocyte maturation begins. Nkx3.2/Bapx1 expression is lost in the growth plates of mice engineered to lack PTHrP si...
متن کاملATF6-dependent expression of an BMP2-inducible XBP1S protein is required for chondrocyte differentiation
Our previous research testified that XBP1S is a significant downstream mediator of BMP2 and is involved in BMP2-stimulated chondrocyte differentiation. Herein we report that ATF6 and ATF6a are expressed in growth plate chondrocytes. There are differentially induced during BMP2-triggered chondrocyte differentiation. This differential expression is probably resulted from the activation of the ATF...
متن کاملThe transcriptional co-regulator Jab1 is crucial for chondrocyte differentiation in vivo.
The evolutionarily conserved transcriptional cofactor Jab1 plays critical roles in cell differentiation, proliferation, and apoptosis by modulating the activity of diverse factors and regulating the output of various signaling pathways. Although Jab1 can interact with the bone morphogenetic protein (BMP) downstream effector Smad5 to repress BMP signaling in vitro, the role of Jab1 in BMP-mediat...
متن کاملPTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation.
In chondrocytes, PTHrP maintains them in a proliferative state and prevents premature hypertrophy. The mechanism by which PTHrP does this is not fully understood. Both Runx2 and Runx3 are required for chondrocyte maturation. We recently demonstrated that cyclin D1 induces Runx2 protein phosphorylation and degradation. In the present studies, we tested the hypothesis that PTHrP regulates both Ru...
متن کاملXBP1S associates with RUNX2 and regulates chondrocyte hypertrophy.
BMP2 (bone morphogenetic protein 2) is known to activate unfolded protein response signaling molecules, including XBP1S and ATF6. However, the influence on XBP1S and ATF6 in BMP2-induced chondrocyte differentiation has not yet been elucidated. In this study, we demonstrate that BMP2 mediates mild endoplasmic reticulum stress-activated ATF6 and directly regulates XBP1S splicing in the course of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 178 شماره
صفحات -
تاریخ انتشار 2007